我在以前的四维空间系列文章中描绘了一个四维星球上的世界。这次要研究的是四维星球自转公转产生的昼夜和季节变化。我们假设这个星球近似为超球,那么第一件要做的事就是怎样描述超球上的一点,这难不倒我们,因为类似球坐标系,我们可以用超球坐标系构造出类似经纬度的表示方法,只是超球表面是三维的,要三个度数表示。
在说这个星球的旋转之前我先简单介绍一下四维空间中物体的旋转:它和三维空间最大的不同就是有“双旋转”。旋转其实是一种二维空间独有的效应:转动平面xy,除了原点外的所点的轨迹都是xy上面的圆。在三维空间中转动平面xy,空间中点的轨迹在xy面上的投影也是一个圆,但注意z轴上的点都没有动,这就是旋转轴。四维空间中转动平面xy,空间中点的轨迹在xy面上的投影也是一个圆,但注意zw坐标面上的点都没有动,所以我们说四维空间旋转是绕着面转动的,你发现问题了没有?其实发生旋转的坐标都只是x、y,但我们却关心的是没参与旋转的部分,这才导致了旋转轴、平面等有不一致的维度。其实四维空间存在除了原点都在动的“双旋转”,这使得我们必须放弃关心没参与旋转的部分:如果一个旋转是xy面和zw面上同时旋转的结合,这就叫双旋转——这是可能的,因为两个平面是绝对垂直的,两个方向上的运动没有干扰,旋转速度也可以不一样。可以证明,四维空间中所有旋转要么是有不动旋转面的简单旋转,要么是除原点外所有点都在运动的双旋转,而每个双旋转又可以分解成两个绝对垂直的单旋转的复合。Hadroncfy的这篇文章详细介绍了双旋转中点的运动。
回到星球的自转上来:我们的宇宙中由于形成初期一些复杂的原因,星球或多或少都在自转,对于四维星球来说双旋转就是一种最一般的自转状态。我们将双旋转分解成两个绝对垂直的单旋转的复合,这两个旋转的速度不一定相等,我们把速度大的旋转平面定为xy平面(下图中红色圆),速度小的平面定为zw平面(下图中红色线,其实也是圆,由于球极投影过极点$-w$),这样就可以建立一个四维直角坐标系。 注意球极投影展示的是超球表面,标出的坐标点是坐标轴与超球表面的交点,坐标原点在球心处,是在球极投影中表示不出来的。