我在以前的四维空间系列文章中描绘了一个四维星球上的世界。这次要研究的是四维星球自转公转产生的昼夜和季节变化。我们假设这个星球近似为超球,那么第一件要做的事就是怎样描述超球上的一点,这难不倒我们,因为类似球坐标系,我们可以用超球坐标系构造出类似经纬度的表示方法,只是超球表面是三维的,要三个度数表示。
在说这个星球的旋转之前我先简单介绍一下四维空间中物体的旋转:它和三维空间最大的不同就是有“双旋转”。旋转其实是一种二维空间独有的效应:转动平面xOy,除了原点外的所点的轨迹都是xOy上面的圆。在三维空间中转动平面xOy,空间中点的轨迹在xOy面上的投影也是一个圆,但注意z轴上的点都没有动,这就是旋转轴。四维空间中转动平面xOy,空间中点的轨迹在xOy面上的投影也是一个圆,但注意zOw坐标面上的点都没有动,所以我们说四维空间旋转是绕着面转动的,你发现问题了没有?其实发生旋转的坐标都只是x、y,但我们却关心的是没参与旋转的部分,这才导致了旋转轴、平面等有不一致的维度。其实四维空间存在除了原点都在动的“双旋转”,这使得我们必须放弃关心没参与旋转的部分:如果一个旋转是xOy面和zOw面上同时旋转的结合,这就叫双旋转——这是可能的,因为两个平面是绝对垂直的,两个方向上的运动没有干扰,旋转速度也可以不一样。可以证明,四维空间中所有旋转要么是有不动旋转面的简单旋转,要么是除原点外所有点都在运动的双旋转,而每个双旋转又可以分解成两个绝对垂直的单旋转的复合。Hadroncfy的这篇文章详细介绍了双旋转中点的运动。
Read More